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In this paper, we establish new asymptotic relations for the errors of
approximation in L,[—1,1], 0<p<oo, of [x|*, 4 > 0, by the Lagrange interpolation
polynomials at the Chebyshev nodes of the first and second kind. As a corollary, we
show that the Bernstein constant

n
Byp = limy o 07 inf, || [x[* — chkaL,,[—l‘l]
=0

is finite for 2 >0 and p € (3,00). © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let 2, be the set of all algebraic polynomials of degree at most n with real
coefficients; B, the class of all entire functions of exponential type 1 with real
coefficients; L,(Q) the quasi-normed space of measurable real-valued
functions / on Q<R with the finite quasi-norm [[f||, ) = (fo I’ dx)'/?,
0<p<oo; Lo(R) the space of all continuous real-valued functions f* on
Q<R with the finite norm ||f{|, (o) = supolfl; Lyla,b] = Ly([a,b]),
O<p<oo.

It was Bernstein [3] who in 1938 initiated the study of polynomial
approximation to f;(¢) .= |l|)' in the uniform metric by proving the following
result: for any A > 0 there exists a constant B, », € (0,00) such that

’1151010 n Ifnrlé{)}” o = Pullp —11) = Broo: (L.1)
The case 4 = 1 was investigated earlier in [1]. The proofs in [1, 3] are difficult,
and many non-trivial technical details are missing. This is the reason why
some mathematicians have doubts about accuracy of the proofs. In
particular, V. M. Tikhomirov in 1988 and S. M. Nikolskii in 2000 asked
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the author as to whether limit relation (1.1) was valid. The answer was
affirmative since there is a rigorous and fairly short proof of (1.1). In 1946
Bernstein [4,23, p. 48] came up with the idea of general limit relations
between polynomial and harmonic approximations which imply (1.1), see
[5,23, p. 416] for details. A more precise limit theorem was obtained by the
author [9]: for any continuous f of polynomial growth on R,

fim - min (N = Pall; (nio,-0) = IE I =0l w), (1.2)
where 0, = /n, n=1,2,... . It immediately follows from (1.2) that (1.1)

holds true with
B = glggl i — g||LOC(R)a (1.3)

(see [10, 11]). Note that the Jackson-type theorem for approximation of
continuous functions of polynomial growth by entire functions of
exponential type (cf. [5,23, pp. 257-259]) implies that the right-hand side
of (1.3) is finite, and so Bernstein’s result can be reformulated as follows: if
the Bernstein constant B, ., is defined by (1.3), then B; . <oo and limit
relation (1.1) holds.

The problem of finding B,  is still open and seems very difficult. Using
high-precision calculations, Varga and Carpenter [22] computed B| o =
0.28017 + o, where |o| <4 x 107°.

Raitsin [15] showed that the uniform norm in (1.2) can be replaced by L,-
norm, 1<p<oo, provided that 6, =0 and infyep ||/ — gl[, &) <oc. The
author [11] extended this result to p € (0,1). As a corollary, we have the
following L,-analogue of Bernstein’s result, if

Byp=inf |Ifi —gll,®,  O<p<oo, 4>-1/p, (1.4)
geB) 4

is finite, then

lim 77 min [[f; = Pyl 11 = Bip- (1.5)

n—oo P,e2,

The explicit expression for the Bernstein constant B;, is known only for
p=1[6,11,14] and p = 2 [16],

By =@®/mI(A+Dsin(xi/2) Y (- Q@k+1)7"72 2> -1,
k=0

=(2/v/m)L(J+ 1)|sin(nl/2)|V24 + 1, A> -1 (1.6)

The problem of finding necessary and sufficient conditions on 4 > —1/p and
p € (0,00) for B, , <oo was posed in [12].
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In this paper we discuss analogues of (1.1) and (1.5) for Lagrange
interpolation to f; at the Chebyshev nodes of the first and second kind. The
corresponding constants will be effectively evaluated, and like (1.3) and (1.4)
they can be expressed via the error of approximation by the interpolation
functions from B;. As a corollary, we obtain a partial solution to the
problem from [12]. )

Let Sy,; € P, be the unique Lagrange interpolation polynomial to |¢]* on
[—1,1] at the Chebyshev nodes {#;} of the ith kind, i = 1,2, 1 > 0. Here,
t =0, i=1,2and

k=1
ty.1 =cos 2)7‘5’ k=1,...,2n,
’ 2n
km
=CcoS ——— =1,... 2....,2 1.
) 0082n+2’ k soe,nn+2,...,2n+

The Ay-approximation error is defined by
Lipi(N,AN) = |Ifi = Sni = (=1)"N " Ax Twill 1,1 1)s
O<p<oo, i=1,2,

where N =2n, n€N; Ay is a real constant; and Ty ,(¢) = Tn(?),
TN72(1) = UN+1(I)/(NZ). Here

Tult) = Q1+ VP =1 + (= VE=1)"),

Un(t) = O+ VE—1)"" — ¢ =V 1" Ve -1

are the Chebyshev polynomials of the first and second kind, respectively.

Approximation properties of the Lagrange interpolation polynomials to
f, have attracted much attention in the 1990s and 2000s [7, 8, 13, 17-21]. In
particular, Revers [17] proved that for N =2,4,...and 1 € (0,%] U {1}, the
following estimate holds:

Liwi(N,0)<2(3)' "N~

Here we study the asymptotic behavior of L; , (N, Ay) for 0 <p<oo and
i=1,2,as N — oo.

Notation. Throughout the paper A is a real number, 1#0,2,..., and
C,C),... denote positive constants independent of N, n, ¢, z, x, M, &,
B, ¢. The same symbol does not necessarily denote the same constant in
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different occurrences. Let us set

: Yy =1, ¢,(t) = cost, @,(t) = sint/t.

N|—

1=

We also make use of the following functions and constants for 4 > 0:

' 00 y).fl
Fart) = (4/m) sin(nl/2) /0 (14 (/0)*) (e + ) .
Fia(t) = (4/m) sin(n2/2) /0 N i +(y/l){;(ey —
0 A—1
C1(2) = (4/x)sin(n2/2) /0 eyy+ —dy
= (4/n) sin(nA/2)I i ok + 1)

k=0

A

C2(2) = (4/x) sin(nh/2) /0 A

= (4/m)sin(n2/2) (4 + 1) N (2k + 1)~
k=0

~ _ N - ) 00 y).+1
®,.1(1) = C1(2) — Foy (1) = (4/m) sin(nA/2) /0 AT
(1.7)
) ) 00 y).+2
@,a(0) = Cald) = Foalt) = () sin(mif2) | gy
(1.8)

It is easy to see that |F;| is increasing in ¢ € (0, 00). Next, using the fact
that @,,(0) = C;(4) and lim,_. @;;(t) =0 for i =1,2 (see also Lemma
3(a)), we arrive at

2::(0)] = |Gi(A) = lim [Fi(0)] = [|Foill vy, =12 (1.9)
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Finally, we define the following special sequences:

] _ 1\Al u
Azyy = Azy1(7) = (2/7) sin(nl/2)n’ /1 (u— 1" (ut1)

w241 (un + u—n)

du,

(u— l)i(u + 1)2
ui/z*z(u”*l _ u*("ﬂ))

du.

Ay = Aznp(2) = (1/m) sin(zA/2)n*+! /loc

We shall show in the next section (see Lemma 1) that

Jlim Ay () =G), =12 (1.10)

2. STATEMENT OF MAIN RESULTS

Let P :=[1/2] and let

P—1

g).,A,1(t) = COS t(A + Z C (2 2] — 2)t2(1+1)

=0

00 k+1) )/1—2P—1>
2 (P+1) k+1 ’
N DY ey ranre:

g5.42(t) =sin t(A + G4 —20— 2)t2’+1

L0+ o (=1 (km)* 2"
k=1 2= (km)*)’

be the entire functions of exponential type 1 that interpolate f; at the nodes

{(k+Hn}_ and {km} iz Fespectivel.y. We shall show ip Section 4 (see

Lemma 5) that g; 4; are the unique even interpolating functions from B; to

/; that satisfy the conditions f; — g, 4; € Loo(R) and g; 4;(0) = 4, i=1,2.
First, we discuss the asymptotics for L; ;.

THEOREM 1. Let 1 >0, A#2,4,... and A € R.
(a) If lim, .o A2y = A, then

lim  N*Lj o1 (N, Ay) =Ifi — gia1llL_w)

N=2n—oo

— max(|Ci (2) — I, |4]). (2.1)
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(b) If lim, oo A2y = A and 0<|t| <1, then
]l\jrr; sup N [fi(t) — Sy (t) — (=1)'N Ay Ty ()| = |C1(2) — 4|.  (2.2)
=2n—o0
(© If p € (3,00), then
im  N*YPL; 0 (N Ang) =11 = il

N=2n—o0

= H‘Pl‘pi,lHLp(R) <oo. (23)

(d) Let lim,_.oc Asy = A, A€R.Ifp € (0,00), A#C(4) or p € (0,1],
A= C(A), then

Jdim  NFUPL (N Ay) = oo, (2.4)
The similar asymptotics hold true for L; ,»(N, Aw).

THEOREM 2. Let 2> 0 and A#2,4,. ..
(a) If p € (3,00], then
ydm N*UPL, 0o (N, Ang) =|If; — 9.2l m)

= H‘/’zde,ZHLp(R) <oo. (2:5)

(b) Let limy .o Asy=A, A€R.Ifp e (0,1], A#Cy(4) or p € (0,4,
A = Cy(A), then

lim  N*TVPL; 5 (N, Ay) = oco. (2.6)

N=2n—o00

For some special cases it is possible to give a more explicit form to the
expressions in Theorems 1 and 2.

COROLLARY 1.  For A > 0, the following asymptotics hold:

lim  N*L;1(N,0)= lim N*L, . (N,Ci(2) =|Ci(A)], (2.7)

N=2n—o0 N=2n—o0
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min  lim N* L)o1(N,Ay) = lim N* L;1(N,Ci(2)/2)

N=2n—o0 N=2n—o0
=[Ci(1)]/2, (2.8)
pdim  NFUL (N, Ay ) = 2[Ci(A+2)l/(2+ 1), (2.9)
N lgtlloo N L)OOQ(N AN2) |C2(/1)|, (210)

where min in (2.8) is taken over all convergent sequences { Ay}, |.

Note that relations (2.7) and (2.8) immediately follow from (2.1), and
(2.10) follows from (2.5), while (2.9) is an easy consequence of (2.3) and the
formula ||¢D,1l[,,®) = 2[C1 (2 +2)[/(Z+ 1) [5,12].

We remark that the estimate lim supy_s,_.oo N*L). 00,1 (N, 0) <|Ci(4)| was
given in [2, p. 100].

Since (2.3)—(2.5), (2.8), and (2.10) imply the inequality

min(|Ci(4)]/2,|C(A)]), p = o0,

. 2.11
minllo@ill,w.  peoo). M

BAp\C)p {

we immediately arrive at the following result.

COROLLARY 2. For /. > 0 and p € (3, 00], relation (1.5) holds true with the
finite Bernstein constant B; , satisfying (2.11).

Remark 1.  Combining (2.9) with (1.6) and (2.11), we conclude that for
/>0, B;; = C;,,and polynomials Sy, + (—1)"(2n) “Aan1 Tr, are asymp-
totically best approximations to f; in L;[—1,1] (see also [11, 14]). It seems
plausible that B, , < C;, for p#1.

The proofs of Theorems 1 and 2 are based on the following asymptotics.

LEmMMA 1. (a) For N=2n, n€ N, 1> 0, and t € [—1, 1], we have

1" = Swa(t) = (=1)'N " T (0)(Fra(NO(1 + v ia (0) + By ia (1), (2.12)

f" = Swa(6) = (=1)"N A Ta()

= (=) IN Ty () (@1 (NO (1 + ovia(0) + By i (1)), (2.13)
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where |ocN,,-,,'(t)|SCN’l/3 and |,3Nq,~~j(l)|<CN)' exp(—C\N'3), i=1,2,
i=1,2.
(b) If 1 > 0, then (1.10) holds.

Remark 2. Note that the proof of (1.1) in [3] was based on a weaker
version of (2.12) for i = 1. The proof of this asymptotic was outlined in [2].

3. PROOF OF LEMMA 1

The proof follows [2, pp. 92, 98-100], though we added some technical
details missing in [2].
We first need the following result.

LEmMMA 2. Let P,; € #, be the Lagrange interpolation polynomial to
(1 —x)* on [—1,1] at the nodes xy; =1,

(k=1/9n - _
cos , 1=1,
Xk,i:{ " k=1,...,n,

kn P
co8 7, i=2

where n > s > 0. Then for any x € [—1,1],

(1 —=x)" = Ppi(x) =(1/m) sin s (1 — x)Qp.i(x)

>0 gquz ;
8 /1 (z = x)Oni(2) “

1,2,  (3.1)

where

T, (2)7 i= 17
&m_{m@,ﬁz
Proof. Let P,;, € 2, be the interpolation polynomial to (¢ — x)" on
[—1,1] at {xx,;};_o, where a > 1 and j = 1,2. By the Hermite error formula
for Lagrange interpolation [25],

. B R/(x) . X (a — Z)‘Y
(@=2) = Pyl =50 Jm iy | IR

dz, (3.2)

where R;(x) == (x — 1)0,,(x) and (a — z)* takes positive values for real z<
a, s >0. Here, Dy, = Cy,UC,UD,UD_, is a contour in C, oriented
in a positive sense, where M and ¢ M >a> (a—1)/2>¢>0, are
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fixed numbers and

Cue={z:|z| = M,arcsin(¢/ M) <|arg z| <=},

C.={z:|z—a|=¢, n/2<]|argz|<n},

D, ={z=xxie:as<x<VM?—¢&}.

—z)’

Since the function A;(z) = (@ satisfies the conditions

(z=¥)R;(2)
hi(z)| < CM*"2 hi(z)| < Ce*
max |h(z)] » - max |h(2)| < C¥
we have
A}iinoo }133 o hj(z) dz = A/l{linoc }E% . hi(z) dz = 0. (3.3)

Next, by the limit relation

lim ((a — (x+i¢))’ — (a — (x —i¢))’ = —2isinws(x — a)’, x=a,

&—

we obtain

Il/lllinoo 11_1’%< /D,; hi(z) dz + . hi(2) dz)

= —2isinzs w—(z_a)s /1
= —2isin /a (z—x)R,(z)d' (3.4)

Then (3.2)—(3.4) yield the integral representation

(a—=x)" = Pnja(x)

(:—ay

z=x)(z = 1)Qn(2)

= (1/m)sinns(l — x)0p;(x) /00 ( dz. (3.5)

Finally, letting a — 1+ in (3.5) and taking account of the relation
limg 14 Pyja(x) = Pyj(x), we obtain (3.1). &
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Proof of Lemma 1. (a) By the substitution z = (})(u +u~"'), we have

00 - s—1
L1 (x) ::(l—x)/l ((71)41'2

z—x)T,(z2)
s R )2s 1)
=22 (l—x)/1 (1 + 1 — 20x) (i + 1
:22—s<(1—x) /H'”/ l—x / /)
1 +n2/3

=227 (I (x) + L(x)).

Then since

1 —x 2
<

< , =0,
xlel[l_:'ll)?l] L+ = 2ux ~ (1 +u)? "

we obtain for n > s

L(x) <2 /OO (u—1)"" du<2(1 23y )
PUST Jn wt(Tu) T n—s+ 1

< Cexp(—n'/3).

Next by the substitution u = 1 4+ y/n, we have

nw=n | " 145
- : -
o (D g (4 (147

Further, it is easy to see that for all y € [0,7'/?] and n>1,

&> (1 + X) TS e 5 1) 5 (1 00!,
n

e’ < (1 +X>_n<(l +n'/3)e™
n
Hence we have for y € [0,n'/3] and n>1

(1—n"3) & +e?) < +y/n)" + (1 +y/n)"

<L+ ') +e7).

(3.6)
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Then it follows from these inequalities and (3.8) that

n'/3 2s5—1
2 y
1) = (14 3y ) > S
0 (1 +m)(@ +€7y)
5 00 y2371
— (1 g [ . dy (), (39)
o (1 —l—m)(é’y +e7Y)

where [y, (x)| < Cn~/3 and [z, (x)| < C exp(—n'/?).
Combining (3.9) with (3.1), (3.6), and (3.7), we obtain for any n € N

(1 =x)"=Py1(x)

2273'
= sin 7wsn~ > T}, (x)

o0 25—1
x((lm,l(x» / o 4 dy+n2~wn,1<x>>, (3.10)

)2 > —v
m)(e} +e })

where |, (x)|< Cexp(—n'/3).
Similarly,

(1 =x)° = Pya(x)

00 - s—1
= (1/n)sinzs(1 — x) Uy(x) /1 %dz
(= 1)"(u+1)

B sinzs(l =) Un(x) /1 w1 + 12 — 2ux) (u+! — y= (1)) du

227s
= sin wsn~ > U, (x)

zl—s

o] 2s
X ((1 +’yn,2(x)) \/0 ( Y dy +n2s+lun,2(x)) ’ (311)

2
L ) (@ — e)

where [7,5(x)| <Cn™'/? and |, 5(x)| < Cexp(—n'7).
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Finally, making the substitutions 1 — x = 22, 2 =2s, N = 2n, in (3.10)
and (3.11) and taking account of the relations

T,(1 —28) = (=1)" Ty (1), P,i(1 =20 =2Syi(1), i=1,2, (3.12)

(1/m)U,(1 = 26) = (=1)"Uzus1 (1) /(202) = (=1)" T 2(2),  (3.13)
we arrive at (2.12).
To prove (2.13), we use the similar argument. We first note that for
€[-1,1] and N = 2n,
(1= x)"? = Pya(x) = (1/n)2>N""4,, U, (x)

= — (2"*2/q)sin (n4/2) Uy(x)

*© (u—1)"Pu+1)*)2
X /1 w22((1 — u)? 4 2u(1 — x)) (! — u(+D) “
+n’2/3 0
= — (2"*?/n)sin(n/2) U,,(x)( /1 + >
1

14n=2/3

= — (22 /n) sin(nA/2) U, (x)(J1(x) + J2(x)). (3.14)
Then estimates like (3.7) hold if # is large enough,

> (u—1)

L(x)<C ————du< Cexp(—n'/?). 3.15
wee [ A sdi<Copt-n). (319
Next, relations like (3.8) and (3.9) are valid,
n—(4+3)
Nix) = 1 —x
X /"1/3 YR+ dy
J 2 o~ -
0 (LD 4L+ ) (0" = (14370 )
ey [ ye
=2(1+, - d
( + /n~2(x))n \/0 (2<1 — X)I’l2 +y2)(€y — €_y) v
+ paa(x), (3.16)

where [y,,(x)|<Cn™'3 and |p,,(x)|< Cexp(—n'/?). Making the substitu-
tion 1 — x = 2¢? and taking account of (3.12) and (3.13), we obtain (2.13) for
i =2 from (3.14) to (3.16). Similarly for i = 1.



THE BERNSTEIN CONSTANT AND INTERPOLATION 205

(b) To prove (1.10), we use the same asymptotic technique.

2/3

) 00 1V 2 . 14+n—2/3
! / (u—1)(ut1) du =n*! / +o(1)
1 1

ui/2+2(un+l _ u—(lH—l))
=4/ L dy+o(1),
0

ey —eV

as n — oo. Thus (1.10) follows for i = 2. Similarly for i =1. 1

4. PROPERTIES OF @, ;

To prove Theorems 1 and 2, we need some properties of the functions
@, A>0, i=1,2, which are given in Lemmas 3 and 5. Recall that these
functions are defined by (1.7) and (1.8).

LemwmA 3. For i = 1,2 the following statements hold:
(@) |®,,| is a decreasing function in t € (0,00) and @, ;(c0) = lim P,;
(1) =0. e
(b) Ifp € (y;,00), then ;®,; € L,(R) and 1;®;; € L,(R\(—1,1)), where
11(t) = 1 and ©y(t) = 1/t.
(©) If p € (i,00), then
lim NI Ty ®4(N )|, -1y = 0Pl m) <00 (4.1)

N=2n—oo

(d) Let pe(0,00) if i=1 and p < (0,1] if i=2. Then for any
convergent sequence {Ba,, }7 | satisfying limy_... Ba, #0, we have

2I11<

Dy = lim inf / | Ton, () (21)) (1 + Oy, *)) @14(8) = Bay, )" dt = 0.

an

(e) If p € (0,v,], then for any sequence { Ba,},- | satisfying lim,_.o Bay =
0, we have

D, = liminf ! [T i(t/N)((1+ O(N~*))®,,(t) — By)l di = o0. (4.2)
-N

N=2n—oo

In the proof of Lemma 3 we shall use the following properties of
Chebyshev polynomials.
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LEMMA 4. (a) If N =2n, then

WTnallp =1 N:lgllloo Tnallp =1 (4.3)
||TN,1||LP[—1.1] =C, p € (0,00); (4.4)
CN"',  pe(01),
T = 4.5
12l {ClnN/N, " @3)
(b) Fori = 1,2,
lim Ty (/N) = 0,(0), (46)
uniformly in any interval |—B, B].
Proof. (a) It is easy to verify that
1 Twallp, -1y = (1/n) max |Uy(1 - 2¢%)]
te0,1]

= (/MU 1y = (2 +1)/n. (4.7)

Next, for p € (0, 00),
n/2 n/2
\|TN,1||’;[7L1] =2 / |cos(2nt)| sintdt>C / |cos(2nt)|P dt=C. (4.8)
' 0 /4

Further for p € (0,1),

/2
I Twallf, 1= CN77 //4 Plsin((2n + 1)1)|P dt
n (4k+2)m/4
>CNT' Y / yP|sin y|” dy
k=jn/2)+1 7 (dk+D)n/4
>CN' > (4k+1)"=CN?. (4.9)
k=[n/2]+1

Similarly for p = 1. Thus (4.7)—(4.9) yield (4.3)—(4.5), respectively.
(b) Limit relation (4.6) is a special case of the Mehler—Heine asymptotic
[20, Theorem 8.1.1]. 1
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Proof of Lemma 3. (a) Since (£ + y*)~' <r72, we obtain from (1.7) and
(1.8) |®,.:(2)|<|Ci(A+2)[t7% for t>1 and i=1,2. Hence ®;;(c0) =0,
i=1,2.

(b) It follows from the estimates

1 00
/ |<p,¢;ﬂ,‘|”dr=2( [+ )
R 0 1

(1Pt + Fraitoall [ o) <o
1

that ¢,®,; € L,(R) for p € (y;,00), i =1,2. Similarly @;, € L,(R) for p €
(3,00) and @,5(1)/1 € L,(R — (—1,1)) for p € (},00).

(c) Note first that by statement (b), for any ¢ > 0 there exists By > 0 such
that for all B > B, f, _p|ti®;l’ dt<e, i=1,2. Then taking account of
Lemmas 4(b) and 3(b), we obtain for any B > By

lim sup N|\TN,,'<15L,<(N~)||’£17[71_’1]

N=2n—o0
N
— lim sup / T st/ N, (1) di
N=2n—o0 —-N
B
< lim sup / Tt/ N) B (D) dit + / (i, di
N=2n—oo —B |l‘>B
<lloi®uilly,|_pp +e<C. (4.10)

Next using (4.6) again, we have

liminf [Ty, 0Ny 2@l e (411)

Finally, letting B — oo in (4.10) and (4.11), we arrive at (4.1).
(d) Without loss of generality we may assume that limy—y, .., By #0. It
follows from (4.3) that

[ irssemmiora=2( [+ [T <ce [T ot

Then by (4.4), (4.5), and (4.12),

N N
D; > liminf <C|BN|” / | Ty i(t/N) dt — C) — C / P/ dt)
_N 1

N=2n—o0

= C3 lim inf 5/\/4',

N=2n—oo
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where
N — C4N'=%, i=1, pe(0,00), p;é%,
N—-CsInN, i=1,p=14
Syi={ N7 =GN, i=2 pe(0,1), p#5,
N*3—C4yInN, i=2 p=1
111N7C4N72, i=2 p=1

This proves the statement.

(e) Let hm By = 0. We first need the following elementary inequality:
for any sequences o, — 0, b, — 0, as n — oo and every a > 0 there exists
ny = ng(a) such that for all n > ny,

la(l + o) — by| = (1 = 2|a|)|a@ — [l |.

Then using this inequality for «, = O(n=*3), b, = By, and a = ®,,;(B),
where B € (1,00), we obtain from statement (a) and relation (4.6)

N=2n—o0

D> > liminf /OB | T i(t/N)((1 + 0(N74/3))<1>;,,,-(t) — By)|" dt

B
> liminf (1—CN*4/3)1’/ |Ti(t/N)(@;i(t) — By)[ dt
0

N=2n—oo

B
> liminf / |Tni(¢/N)(®,:(t) — ®,:(B)| dt
0

N=2n—o0
B
= / lp;()(P1.i(1) — @;(B))|” dt. (4.13)
0
Since for 7 € [}, B/2],
1 | B?
D, ; — @, (B > _ > —27
ralt) = 2B C<t2+1 BZ+1> i1

we have from (4.13) for p € (0, ;]
B/2 00
D> C lim (B*/(B*+1)Y / |2, (t) P dt = C/ ), (2) | dt
B—oo 12 1/2

00 n/342kn y 00 /
>C / tPlidt=C 8k + 1) "7 = .
; n/4+2kn ; ( )

This completes the proof of the lemma. 1§

LEMMA 5. Let A >0 and .#2,4...
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(a) For t € R the following series expansions hold.

(O Fi(1) = |1 = g10.4(0), i=1,2. (4.14)

(b) gi4i=gs0,;+ A, is the unique even function from By to f; that
interpolates f; at nodes {(k +Y)n};° __ for i=1 and at {kn} oy fori=2
and satisfies the following conditions: f; — gj4; € Lo(R) and ¢;.4,(0) =
A, i=1,2.

Proof. We first prove (4.14) for 0<A<?2 (cf. [2, p. 101]) , that is

CostF; (1) = 1| — 2% cos 1

Xi k+1 ]) )/1 1/( ((k—i— ) ) ) (4.15)
k=0

(sin t/1)F;(1) = |1 —2151ntz /(2 = (kn)?). (4.16)
Setting
Zi—l Z)'
z) = h(z) =
T B TP M T B pyp  peps
we have

F;;(t) = (2i/m) exp(— inﬂu/2)< /000 hj(z) dz — exp(inl) /000 h;(z) dz)

= (2i/n) exp(—inl/2) /jo hi(z) dz
=(2i/n)exp(—inl/2) lim  lim hj(z) dz, j=12,

M=pn—00 -0 Dirs

(4.17)

where p; =2m+ (1+(=1Y)/4, m=1,2,..., j=1,2, and Dy, = Cj, U
C/ U D; is a contour in C, oriented in a positive sense. Here

Cs={z:|z| =96, O<argz<n}, D, = {z=x+i0: ¢e<|x|<M}.

To justify the last equality in (4.17), we first note that

lim hi(z) dz = 0. (4.18)
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Next, if z = x + iy, |z| = 2mm=, then

A RO [x[>1
‘eb_’_e A|> 2 ’ . = >(%)€M
|cos yle,  |x] <1

Similarly, for |z| = |x + iy| = (2m + {)m,
1y olx] >1
e, X| =
|ez . e—z| > (2) | | > (%)e|x|.
|sin yleP!,  |x| <1
Hence if M = y;m is large enough, then
|hj(Me?)|[ <K CM*2 e |o|<n/2, j=1,2.

Using Jordan’s Lemma, we obtain for 4 € (0,2)

lim hi(z)dz=0, j=1,2. (4.19)

M=p;n—o00 :
K Cl,

Thus (4.18) and (4.19) imply the last equality in (4.17). Evaluating now
the integral |, Dy hj(z) dz by the Residue Theorem, we arrive at (4.15) and
(4.16).

Next let A > 2. Then setting P = [1/2], we have

=3

cos tF; (1) = (4/m) sin(ni/2)¢* cos t /Ooo 0 ([/yJ)/Z)(ey g dy

= (4/n) sin(n/2) cos t

P-1 ] y/l—21—3
> (_1)1t2(1+]) / : - dy
= 0 e+ eV

\Pop 00 y/”fZPfl
(1) /0 <1+(y/t)2)(ey+e—y)dy>' (4.20)

Since 0 </ — 2P <2, we may apply (4.15) to the last integral in (4.20). Thus
(4.14) for i = 1 follows. Similarly using (4.16) and an analogue of (4.20) for
(sint/t)F,»(t), we obtain (4.14) for i = 2.

(b) Note first that g, 4, € By (cf. [23, p. 181]), and g, 4,(0) = 4. Then by
(4.14), 7 — 91,4 € Loo(R), and (f; — g.4,:)(¢) = 0 if and only if 7 is a node.
The uniqueness of g, 4; can be proved by the standard argument [23, p. 180]:
for any function g* with the similar properties, (g; 4, — ¢*)/¢; is an entire
function from L. (R) and (g, 4; — ¢*)(0) = 0. By Liouville’s Theorem, g, 4
= g*, and this proves the lemma. 1
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5. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. (a) Let lim,,_,o, A2, = A. It follows from (2.12) that
NPt = Sy (0) = (=1)"'N A T, (1)

= |Tn1(t)||F;1(Nt) — Ay| + o(1), N =2n — co. (5.1)
Hence taking account of (1.9) and (4.3), we have

limsup N*L; (N, Ay)<max(|Cy(2) — A4],|4]). (5.2)

N=2n—oo

Further (5.1) implies that

liminf N*L;.1(N,Ay)

N=2n—o0

> lim inf N to]* = Sna(to) = (=1)"N*Ax Ty .1 (10)]
=2n—o00
= max(|Ci(4) — 4], ]4]), (5.3)

where ) =0 if |[4| > |Ci(1) — 4|, and #) = 1 otherwise. Then by Lemma
5(),

2= granll, w)y = sulg) |cos t(F; 1 (t) — A)] = max(|Ci (1) — 4], ]4]). (5.4)
te

Thus (5.2)—(5.4) yield (2.1).

(b) Asymptotic (5.1) shows that to prove (2.2), it suffices to find an
increasing subsequence {2n;()}2; of indices such that lim; .o |T24,1 (1) = 1,
where ¢ € [—1,1]. If o := (arccos ¢)/n is a rational number m/k, then it is
clear that n; = kj, j € N. If o is irrational, then the existence of such a
sequence follows from the well-known fact that the sequence {no (mod 1)
}ooo is dense in [0, 1].

(¢) By Lemma 3(b), cosi®;;(t) € L,(R), if p € (3,00). Then using
asymptotic (2.13) and Lemma 3(c), we obtain

lim  N*VYPL, (N, Axy)
N=2n—o0 '

= lim NP1+ O P)[[Tn, @11 (V)| -1y

N=2n—o0

[leos(-) @11 ()], ) <o (5:5)

Thus (4.14) and (5.5) yield (2.3).
(d) Let limy_o A2y = A, and let By = (—1)"(Ay — An1), where N =
2n, n € N. Suppose first 4 C,(4) and p € (0,00). Then by Lemma 1(b), we
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have lim,,_.,, Bs,#0. Next, we derive from (2.13) that

lim  N*VPL, (N, Ay)

N=2n—o0

N 1/p

;AIIinginf (/ |Tn(t/N)(@y1(2)(1 + on12(¢/N)) — By)[ dz) . (5.6)
=4n—o0 _N

Thus (5.6) and Lemma 3(d) yield (2.4). If 4 = C;(4) and p € (0,1], then by

Lemma 1(b), limy_7,—.. By = 0. Now (2.4) follows from Lemma 3(e). The

proof of Theorem 1 is completed. 1

Proof of Theorem 2. The proofs of statements (a) and (b) for p# oo are
similar to those of Theorem 1(c) and (d). It remains to prove (2.5) for
p = 00.

Using (2.13) and (4.3), we have

lim Sup N;LLLOO_Q(N, AN‘Q) < |¢42(0)‘ (57)

N=2n—o00

Next taking account of the relation limy—y,—. Tn2(0) = 1, we obtain from
(1.9) and (1.10)

lim inf N;'L,Loo,z (N,Ay»)

N=2n—oo

> lim inf NY£(0) = Sy2(0) — (—1)'N~*Ay2Tn2(0)] = |@;2(0)]. (5.8)

=2n—o0

Since |@;,(0)| = ||(/)2(Px,2||L%(R), inequalities (5.7) and (5.8) yield (2.5) for
p = oo. This completes the proof of Theorem 2. 1
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